The demand for resilient logistics networks has increased because of recent disasters. When we consider optimization problems, entropy regularization is a powerful tool for the diversification of a solution. In this study, we proposed a method for designing a resilient logistics network based on entropy regularization. Moreover, we proposed a method for analytical resilience criteria to reduce the ambiguity of resilience. First, we modeled the logistics network, including factories, distribution bases, and sales outlets in an efficient framework using entropy regularization. Next, we formulated a resilience criterion based on probabilistic cost and Kullback--Leibler divergence. Finally, our method was performed using a simple logistics network, and the resilience of the three logistics plans designed by entropy regularization was demonstrated.
translated by 谷歌翻译
Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. We then propose a new method to improve Mixup based on the novel insight. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across various datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
translated by 谷歌翻译
Factorization machines (FMs) are a powerful tool for regression and classification in the context of sparse observations, that has been successfully applied to collaborative filtering, especially when side information over users or items is available. Bayesian formulations of FMs have been proposed to provide confidence intervals over the predictions made by the model, however they usually involve Markov-chain Monte Carlo methods that require many samples to provide accurate predictions, resulting in slow training in the context of large-scale data. In this paper, we propose a variational formulation of factorization machines that allows us to derive a simple objective that can be easily optimized using standard mini-batch stochastic gradient descent, making it amenable to large-scale data. Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions. We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy, and provide some applications in active learning strategies, e.g., preference elicitation techniques.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In real-world time series recognition applications, it is possible to have data with varying length patterns. However, when using artificial neural networks (ANN), it is standard practice to use fixed-sized mini-batches. To do this, time series data with varying lengths are typically normalized so that all the patterns are the same length. Normally, this is done using zero padding or truncation without much consideration. We propose a novel method of normalizing the lengths of the time series in a dataset by exploiting the dynamic matching ability of Dynamic Time Warping (DTW). In this way, the time series lengths in a dataset can be set to a fixed size while maintaining features typical to the dataset. In the experiments, all 11 datasets with varying length time series from the 2018 UCR Time Series Archive are used. We evaluate the proposed method by comparing it with 18 other length normalization methods on a Convolutional Neural Network (CNN), a Long-Short Term Memory network (LSTM), and a Bidirectional LSTM (BLSTM).
translated by 谷歌翻译
This study proposes novel control methods that lower impact force by preemptive movement and smoothly transition to conventional contact impedance control. These suggested techniques are for force control-based robots and position/velocity control-based robots, respectively. Strong impact forces have a negative influence on multiple robotic tasks. Recently, preemptive impact reduction techniques that expand conventional contact impedance control by using proximity sensors have been examined. However, a seamless transition from impact reduction to contact impedance control has not yet been accomplished. The proposed methods utilize a serial combined impedance control framework to solve this problem. The preemptive impact reduction feature can be added to the already implemented impedance controller because the parameter design is divided into impact reduction and contact impedance control. There is no undesirable contact force during the transition. Furthermore, even though the preemptive impact reduction employs a crude optical proximity sensor, the influence of reflectance is minimized using a virtual viscous force. Analyses and real-world experiments confirm these benefits.
translated by 谷歌翻译
Generative models, particularly GANs, have been utilized for image editing. Although GAN-based methods perform well on generating reasonable contents aligned with the user's intentions, they struggle to strictly preserve the contents outside the editing region. To address this issue, we use diffusion models instead of GANs and propose a novel image-editing method, based on pixel-wise guidance. Specifically, we first train pixel-classifiers with few annotated data and then estimate the semantic segmentation map of a target image. Users then manipulate the map to instruct how the image is to be edited. The diffusion model generates an edited image via guidance by pixel-wise classifiers, such that the resultant image aligns with the manipulated map. As the guidance is conducted pixel-wise, the proposed method can create reasonable contents in the editing region while preserving the contents outside this region. The experimental results validate the advantages of the proposed method both quantitatively and qualitatively.
translated by 谷歌翻译
We present a data-driven framework to automate the vectorization and machine interpretation of 2D engineering part drawings. In industrial settings, most manufacturing engineers still rely on manual reads to identify the topological and manufacturing requirements from drawings submitted by designers. The interpretation process is laborious and time-consuming, which severely inhibits the efficiency of part quotation and manufacturing tasks. While recent advances in image-based computer vision methods have demonstrated great potential in interpreting natural images through semantic segmentation approaches, the application of such methods in parsing engineering technical drawings into semantically accurate components remains a significant challenge. The severe pixel sparsity in engineering drawings also restricts the effective featurization of image-based data-driven methods. To overcome these challenges, we propose a deep learning based framework that predicts the semantic type of each vectorized component. Taking a raster image as input, we vectorize all components through thinning, stroke tracing, and cubic bezier fitting. Then a graph of such components is generated based on the connectivity between the components. Finally, a graph convolutional neural network is trained on this graph data to identify the semantic type of each component. We test our framework in the context of semantic segmentation of text, dimension and, contour components in engineering drawings. Results show that our method yields the best performance compared to recent image, and graph-based segmentation methods.
translated by 谷歌翻译
Offline reinforcement learning (RL) have received rising interest due to its appealing data efficiency. The present study addresses behavior estimation, a task that lays the foundation of many offline RL algorithms. Behavior estimation aims at estimating the policy with which training data are generated. In particular, this work considers a scenario where the data are collected from multiple sources. In this case, neglecting data heterogeneity, existing approaches for behavior estimation suffers from behavior misspecification. To overcome this drawback, the present study proposes a latent variable model to infer a set of policies from data, which allows an agent to use as behavior policy the policy that best describes a particular trajectory. This model provides with a agent fine-grained characterization for multi-source data and helps it overcome behavior misspecification. This work also proposes a learning algorithm for this model and illustrates its practical usage via extending an existing offline RL algorithm. Lastly, with extensive evaluation this work confirms the existence of behavior misspecification and the efficacy of the proposed model.
translated by 谷歌翻译
Multilingual pretrained models are effective for machine translation and cross-lingual processing because they contain multiple languages in one model. However, they are pretrained after their tokenizers are fixed; therefore it is difficult to change the vocabulary after pretraining. When we extend the pretrained models to new languages, we must modify the tokenizers simultaneously. In this paper, we add new subwords to the SentencePiece tokenizer to apply a multilingual pretrained model to new languages (Inuktitut in this paper). In our experiments, we segmented Inuktitut sentences into subwords without changing the segmentation of already pretrained languages, and applied the mBART-50 pretrained model to English-Inuktitut translation.
translated by 谷歌翻译